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Solitons, Bose-Einstein Condensation, and 
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The analytic form of a wave propagating with a constant velocity and a permanent 
profile is inferrred for a weakly interacting Bose gas, using an exact (rather than 
asymptotic) solution of the field equation of the self-consistent Hartree model. 
The significance of this approach is indicated, especially when realistic inter- 
atomic potentials are used. In addition, the general relation between solitons 
and Bose-Einstein condensation is underlined by invoking the profound insight 
recently acquired in studies of the quantum liquids involved in the living state. 
It is concluded that solitons may occur in He II, and may play a significant role 
in the phenomenon of superfluidity. 

1. I N T R O D U C T I O N  

In spite of the considerable progress achieved in the last 50 years or 
so (Vinen, 1983), a full microscopic theory of He II has proved to be quite 
elusive. In particular, the question first raised by London (1938) regarding 
the relation between Bose-Einstein condensation and superfluidity is still 
as controversial as ever (March, 1983; Ghassib and Chester, 1984). 

One of the reasons for this elusiveness is presumably the unwieldy 
character of this deceptively simple quantum liquid, which does not yield 
easily to the usual experimental probes. It seems reasonable, therefore, to 
look at other systems where Bose-Einstein processes may occur, but which 
are more amenable to these probes. In this manner we seek some indicators 
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as to the real microscopic description of He II. This is at tempted in both 
Table I and Section 2. 

At the same time the possible existence of solitons has recently been 
speculated upon in both thin He I I  films (Biswas and Warke, 1980, 1983) 
and in the Madelung fluid (Nonnenmacher  and Nonnenmacher ,  1983). The 
picture that has emerged from solving the hydrodynamic equations corre- 
sponding to the nonlinear Schr6dinger equation (NLSE) is as follows: 

(i) Only purely attractive interactions yields soliton solutions. For 
purely repulsive interactions any initial data that vanish as x ~  ov will 
eventually evolve into decaying oscillations (Nonnenmacher  and 
Nonnenmacher ,  1983). 

(ii) The dominant  asymptotic behavior of  the solution of the NLSE, 
without the restriction to a purely attractive or purely repulsive interaction, 
has been obtained (Segur, 1976); this contains both solitons as well as 
decaying oscillations. 

In this paper  we consider the possible existence of solitary waves 
propagating in He II. We approach this problem for a system of weakly 
interacting bosons in a self-consistent field approximation (Gross, 1963), a 

Table I. Physical Phenomena Involved in Various Manifestations of Quantum Liquid 
Behavior 

Bose- Einstein Solitons 
condensate or 

Quantum fluid (0 K) solitary w a v e s  Superfluidity 

Ideal Bose gas 100% No No 

Weakly interacting ~ 100% Yes Yes 
Bose gas (Gross, 1983) (this paper) (Reppy, 1984) 

He II - 10% Yes Yes 
(Sears et aL, 1982) (this paper) (Kapitza, 1941) 

Biosystems Yes Yes Yes a 
(Fr6hlich, 1968)  (Davydov and (Fr6hlich, 1977) 

Kislukha, 1973) 

Superconductors Yes Yes Yes 
(but see Leggett, (Tuszynski et  al., (Bardeen et  al., 

1980) 1984) 1957) 

Liquid 3He Yes Yes Yes 
(Leggett, 1975; but (Maki, 1978) (Osheroit et  al., 
see Leggett, 1980) 1972) 

aConjectured only. 
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long-tested model of superfluidity in He II, which has the double advantage 
of being mathematically simple and physically realizable in the form of 
liquid 4He adsorbed on porous Vycor glass (Reppy, 1984). That the Hartree 
liquid model (Gross, 1963) may be relevant to real He II has already been 
demonstrated, provided the appropriate U(1) gauge theory is considered 
as its natural extension (Chela-Flores, 1975; Chela-Flores et al., 1977). More 
generally, by considering a hierarchy of increasingly refined effective 
Lagrangian densities (Ghassib and Chela-Flores, 1983; Ghassib and 
Khudeir, 1986; Chela-Flores and Ghassib, 1986), the range of validity of 
the Hartree model has been shown to be much wider than is commonly 
thought. 

The remainder of this paper is as follows: 
In Section 2 we consider the progress achieved in understanding some 

basic phenomena in the life sciences, where Bose-Einstein condensation 
produces order in momentum space, and where this order is propagated 
through the system by means of solitons. We argue that such knowledge 
has an important bearing on the general phenomenon of superfluidity. In 
Section 3 we discuss the self-consistent field approximation paying special 
attention to the choice of potential. In Section 4 we consider an exact 
solution to the field equation for a model, but nontrivial, potential that 
contains both attractive and repulsive components. We find that, for 
velocities exceeding a certain critical value, permanent waves propagate 
with a constant velocity. Finally, in Section 5, we reconsider the relationship 
between Bose-Einstein condensation and superfluidity within the present 
framework, concluding that solitons may act as agents for propagating the 
condensate throughout the medium. In passing, the intriguing question of 
the possible relation between solitons and dimers is discussed. 

2. ON THE ANALOGY BETWEEN HELIUM II 
AND BIOSYSTEMS 

Considerable progress has been achieved recently in the understanding 
of the living state by considering the novel perspective of order in momentum 
space. Two models have been proposed. The first hinges on condensation 
of phonons (Fr6hlich, 1968) as well as on pairing of phonons (Chela-Flores, 
1985). The second is based on soliton propagation in some proteins and 
nucleic acids (Davydov and Kislukha, 1973). These two seemingly different 
models of biological order have now been brought together (Tuszynski et 
al., 1984b), with the corollary that Bose-Einstein condensation and soliton 
propagation are not just mathematically equivalent, but also physically 
complementary, in the sense that solitons are needed to propagate order in 
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various types of biosystems. The underlying static effect (Bose-Einstein 
condensation) in these systems manifests itself in several ways: 

1. Specific biological effects characterized by low frequencies (milli- 
meter waves) have been found (Grundler and Keilman, 1983) in the tem- 
perature range 30-35~ where the growth rate of yeast cells is appreciably 
altered. 

2. It has been shown, using the Raman effect (Drissler, 1980) on algae, 
that certain chlorophyll lines in the range 100-3000 cm -1 are present at low 
temperatures, but disappear at room temperature. 

3. Human red blood cells (erythrocytes) are only subject to Brownian 
motion until they get stuck together in rouleaux. These cells rush forward 
once they have approached each other to within 4/zm (Sewchand and 
Rowlands, 1983). 

On the other hand, the dynamic effect (solitons) can also become 
evident: 

1. It can aid in the understanding of some properties of the green alga 
Chlorella pyrenoidosa (Del Oiudice et aL, 1981). 

2. It can explain the interesting phenomenon of resonant absorption 
of microwave energy by aqueous solutions containing helical DNA of known 
length (Edwards et al., 1984; Scott and Jensen, 1985). 

3. It can explain certain phenomena related to the fact that nucleic 
acids exhibit a large number of double-helical conformational structures, 
which may be grouped into two classes, A and B; the A~ B transition is 
induced experimentally by small changes in the relative humidity at which 
the macromolecules are held. The Davydov solitons have been proposed 
to provide the dynamic mechanism responsible for these transitions (Del 
Giudice et al., 1982). 

In this connection it is worth noting that, within the framework of 
rigorous field theory, the close relationship between solitons and Bose- 
Einstein condensation has been known for some time (Matsumoto et al., 
1979; Mercaldo et al., 1981). In particular, the soliton has been described 
in terms of condensation of quanta, i.e., it has been reconstructed in terms 
of vacuum expectation values of a quantum field. This adds considerable 
weight to our arguments. 

From the above analogy between biosystems and He II, as well as the 
evidence just cited, we conjecture that solitons are stable, since order in 
momentum space requires it. Now, if order in all quantum liquids is 
precipitated by the same underlying physical mechanism, then He II ought 
to display solitonic behavior. In this system the static (time-independent) 
effect of Bose-Einstein condensation may be probed by neutrons. The 
dynamic (time-dependent) effect is proposed in this paper to arise from the 
presence of solitons, as we shall see. 
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3. THE H A R T R E E  A P P R O X I M A T I O N  A N D  T H E  
CHOICE OF P O T E N T I A L  

In the Hartree approximation we have the time-dependent self- 
consistent field equation 

O h 2 0 2 
ih'~t~7(x , t ) -  2 m  Ox 2~7(x' t )+A~(x,  t) 

+n(x,  t) f I~(Y, t)12V(x-Y) dy (1) 

where ~7(x, t) is the single-particle state normalized such that ~ I~/[ 2 dx = N, 
where N is the total number of particles in the system, and A denotes the 
chemical potential. Equation (1) must be simplified if a solution is to be 
obtained. Various choices of potential are possible: 

1. The purely repulsive delta-function interaction is a popular choice 
(Gross, 1963): 

V(x-y)  = Vo 6 ( x - y )  (2) 

However, this is appropriate only for phenomena with typical length 
dimensions larger than the range of the interparticle force. 

2. A somewhat more realistic potential is (Liu and Zamik, 1984) 

V(x -y )  = - Vo e x p ( - r 2 /  a z) +lt3p(R) f i(x-y)  (3) 

where a is the range of the attractive part, p =--I~12 denotes the fluid density, 
and t3 is some adjustable parameter; further, 

R =1(x+y) 

and 

r = x - y  

3. An intermediate case between the previous two potentials is the 
Skyrme type, in which the attractive Gaussian becomes (Skyrme, 1959) 

- V o e x p ( - r 2 / a 2 ) - > - t o 6 ( r ) + I t o a 2 [ k 2  ~ ( r ) + ~ ( r ) k  2] (4) 

where 

k = - i i (vx  -Vy)  

In the limit as a--> 0, 

- Vo e x p ( - r 2 / a  2) --> - a  a Vocr 3/2 6(r) 

In other words, the intermediate case becomes 

V(x-  y) = - a  3 Vocf 3/2 6(r) +~tap(R ) 6(r) (5) 
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4. More realistic potentials are known, examples of which are the 
HFDHE2 (Aziz et al., 1979) and the HFIMD (Feltgen et al., 1982) potentials. 

In order to approach the superfluid problem a compromise must be 
struck among potentials 1-4. The work relating to solitons in the NLSE has 
so far been confined to potential 1, i.e., equation (2) (Nonnenmacher and 
Nonnenmacher, 1983; Segur, 1976). 

Now, case (i) in Section 1 is not germane to our physical system, since 
the repulsive part of the interaction definitely plays a significant role. Case 
(ii) in that section, on the other hand, is inconvenient since the asymptotic 
behavior of the potential itself is quite specific and depends on the choice 
of potential we have in mind. 

We proceed to investigate solutions to wave propagation in our weakly 
interacting Bose system using the potential given by equation (5). This is 
dictated by our desire to obtain a reasonably realistic, yet still analytically 
manageable, solution to the field equation (1). 

4. THE EXACT SOLUTION OF THE FIELD EQUATION 

4.1. On the " T C P "  Solut ion 

From the above arguments it follows that it is desirable to solve equation 
(1) with at least a rudimentary interaction potential mimicking the gross 
features of a potential that has both attractive and repulsive parts. Several 
progressive refinements of analytic detail may be brought into the descrip- 
tion, but we start with a simplified form of the potential given by equation 
(5), in which the repulsive part VR is taken to be density-independent: 

vR =173 ~(r) (6) 

We first note that exact solutions to the one-dimensional, time-depen- 
dent Landau-Ginzburg equations have been obtained recently (Tuszynski 
et al., 1984a). These will be referred to as the TCP solutions. It should be 
emphasized, however, that this is essentially a one-dimensional problem; 
the three-dimensional counterpart is not amenable to any solution at present. 

The order parameter 

= [71 exp(i~b) (7) 

has been expressed by TCP as a complex function dependent on both a 
space and a time variable. The first equation studied by them is 

-V~xx+[2A2+(n+2)An+2[~Tl"+(2n+2)A2,+2[~7[2~]T1 = - i 7  h (8) 

where the subscripts denote differentiation with respect to the variables 
indicated. 
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It is importnat to remark at this stage that the phase qb, which determines 
the quantum velocity of the soliton, as we shall see, is related to ~7; the one 
quantity implies the other. This is consistent with the well-known property 
of solitons that the velocity is proportional to the amplitude. 

Defining the parameters 

1 [ v 2 \ 2A.+2 2A2n+2 
c , ~ [ 2 A 2 + ~ - - - ~ ) ,  c2-= D ' c3-  

where 

v -= -2Dtbx 

denotes the quantum velocity, and 

A ~ 4C 3 C t -- C~ 

TCP found the following solution: 

l + A f  1'2 
rl(x, t) = -~c~ / s inh[X4+ nc,  / ( x  - v t )  

I -- A cosh[  X4::i: t.ICll/2( X __ I.)I ) ] _~C1} -1/n 
+ 4cl (9) 

provided cl > 0 and A is arbitrary. Here 

3;4 = ln{2[ cl(c~ 7/02n + c2~7o n + c3)]1/2 + 2Cl ~o ~ + c2} (10) 

where ~7o-= ~7(x = vt) .  It is interesting to note that the quantum velocity v 
is nothing other than the superfluid velocity arising in the Madelung-Bohm 
transformation (Madelung, 1927; Bohm, 1952). 

4.2.  D i s c u s s i o n  o f  the C a s e  n = 1 

Our attention is at present confined to equation (8) with n = 1. It follows 
that the restrictions for even n listed by TCP do not apply here. Further, 
in this case, the term A,+2 = A3 will arise. However, this would be dropped 
in the Landau-Ginzburg free energy expansion, which lies at the root of 
the method of solution for equation (8), since only A2, A 4 ,  and A6 occur 
in that expansion (Tuszynski et al., 1984a). 

Thus, for our weakly interacting Bose gas, taking 

D -= - (2m)-1;  2A2-= A; 4A4 =- ( - a  3 VoTT3/2 -[ - ['3/6) ------ g 

where m denotes the 4He atomic mass, we find 

c2 = 0 (1 la) 



1046 Chela-Flores and Ghassib 

cl = -2rn (A - my 2) ( l lb)  

c3 = - r a g  ( l lc )  

A = 8m2g(A - rnv 2) (1 ld) 

g = -a3Vozr3/2+ ?3/6 ( l ie )  

The condition c 1 > 0 becomes 

v2> A / m  (12) 

The solution (9), along with the parameters given by equations (11a)-(l le)  
and the restriction (12), represents waves propagating through the system 
with a constant velocity v ( > A / m )  and a permanent profile. It is crucial to 
note that, under these circumstances, the quantum velocity must exceed a 
certain critical value vc =- ( A / r n )  1/2. 

4.3. On the Choice of the Interaction Potential 

More detailed analytic solutions of an exact nature may be followed 
up by a more careful consideration of the attractive part of the potential, 
for instance, by returning to the Gaussian shape [cf. equation (3)]. Alterna- 
tively, the analysis of Moszkowski and Scott (1960) may be attempted, in 
which the repulsion effectively cancels a part, but not all, of the attraction. 
The assumption here is that we may throw away the repulsion and  the part 
of the attraction that is canceled. We may then work only with the remaining, 
relatively weak interaction. 

4.4. Experimental Search for the Propagating Solitons 

We believe that the essential qualitative features of this interesting 
phenomenon of wave propagation are already built into solution (11). 
Experiments should display this behavior, solitons being detected by their 
familiar properties (Kodomtsev and Karpan, 1971). 

In this connection, restricted dimensions also come to mind, as in the 
original suggestion of He II solitons (Huberman, 1978). Even more 
appropriately, experiments could be carried out on 4He adsorbed on porous 
Vycor glass, since this seems to behave as a dilute Bose system (Repply, 
1984). Notwithstanding the underlying difficulties, it is worth pursuing this 
matter in view of the fundamental importance outlined in the following 
section. 
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5. CONCLUSIONS 

We have been motivated in this work by two different factors: 
1. The recent deep understanding of living matter, which is capable 

of achieving a steady state away from thermal equilibrium through the 
appropriate use of both metabolic energy and soliton propagation in the 
presence of a single quantum mode macroscopically occupied by phonons. 

2. The experimental discovery of a physically realizable, weakly inter- 
acting Bose system (Reppy, 1984), which is amenable to a quantum 
mechanical treatment gradually approaching a reasonable microscopic 
description (Ghassib and Khudeir, 1986; Chela-Flores and Ghassib, 1986). 

By considering a generalized Madelung fluid, we have inferred that 
propagating solitons should exist in the weakly interacting Bose system and 
perhaps even in He II itself. The analogy with biophysical systems has led 
to the remarkable conclusion that these solitons play the vital role of 
propagating Bose-Einstein condensation through the medium, thereby 
effecting "phase-locking"--the key mechanism in the phenomenon of super- 
fluidity (Anderson, 1966). It is not unreasonable, therefore, to suggest that 
a Bose-Einstein condensate might become a superfluid through the medi- 
ation of solitons. 

Further work should shed more light on the fundamental questions 
involved here, including the suggestive remarks that soliton solutions for 
the Madelung fluid are represented by poles occurring in the scattering data 
in the complex energy plane (Nonnenmacher and Nonnenmacher, 1983)- 
just where bound states (dimers) occur. This raises the important question: 
What is the relation between solitons and dimers? 

While a conclusive answer requires more rigorous work, it is already 
clear that these are indeed related. In particular, only those operators of 
the NLSE that give discrete spectra yield solitonic solutions. For continuous 
spectra, decaying oscillations are obtained, as we have seen. Since the most 
highly acclaimed He-He potentials sustain a diatomic weakly bound state-- 
a dimer (Ghassib, 1984)--it is reasonable to anticipate that, when used in 
the above framework, these should yield solitons as well. 

There is no evidence to suggest that this relation is causal; however, 
the mere fact that both dimers and solitons appear, if at all, simultaneously 
is intriguing enough to merit further investigation. 
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